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GLOSSARY OF SYMBOLS 

b. The coefficient of the jth mimic filter 
J 

C(s) The Laplace transform of the transfer function of a closed 
loop system in which the human operator is an element 

-7*8 
e A time delay;   it represents, for the human operator model, 

man's reaction time function 

Ht)f  g(t) Symbols signifying a time function (in the context f(t) is 
often an input time function and g(t) represents the output) 

F(jco),  G(jco)       The Fourier transforms of f(t) and g(t),   respectively 

F(s) The Laplace transform of f(t) 

h(t) The human operator transfer function (or "describing" 
function) in the time domain o, (t)/i,(t) 

n        n 

h(f*) The linear human weighting function which combines with 
nc(t) to form the time-dependent transfer function of the 
human operator 

H(jco) The Fourier transform of h(t) 

H(s) The Laplace transform of h(t) 

i Input to the simple system model 

i(t) Conventionally,  a system forcing function;   the input as 
a function of time 

i Input to the human in a man-machine system 
h 

I, (s) The Laplace transform of i 
h h 

i Input or forcing function to a man-machine tracking system 
5 

j A subscript representing an integer,   generally 1,   2,   3, . . . ,   N 

k A constant 

K In general,  a gain symbol 



K Gain for the human operator model 
P 

M(jco) Mimic transfer function 

n  (t) The remnant time function which includes the non-linear 
human characteristic not covered by h(t) 

n. A partial number of input elements (see context) 

N Represents  integral number,   e. g, ,  the number of filters 
for mimicking 

N. Total number of input elements 

o Output of the simple system model 

o( ) Output as a function of (   ) 

o Output of the controlled element in a man-machine system 

o. Output of the human in a man-machine system 
h 

O   (s) The Laplace transform of o 
n n 

o Tracking system output 

p( ) Probability of (   ) 

P Parameters of the simple system model 

S0 Variance of the operator's output 

S€ Mean-square error of the operator-mimic output difference 

t A symbol representing the variable,   time 

T (See JCff(T) :/T/»/r/    )   A specified time or a generalized 
time constant 

T A lag compensation time constant characteristic of the 
human operator 

T A lead compensation time constant characteristic of the 
human operator 



T The neuromuscular system time constant characteristic 
of the human operator 

T^ Sampling period for the sampled data system 

V. Input voltage 

V Output voltage 

w The human operator's linear weighting function 

z(t) The output of a single filter 

Z(t) The output of the sum of weighted filter outputs 

£ (t) In mimicking,  the difference between the human operator's 
output and the output of the mimic model 

a The damping ratio for a damped system or system element 

T An interval of time from some reference time; (/?"7«/T/    ) 

/AcAc Autocorrelation function of the time-dependent portion 
in C(s) 

PfAT) The general symbol for the autocorrelation function in which 
every instant f(t) is correlated with its associated f(t +T) in 
the interval -T to T 

r.. Autocorrelation function of the input forcing function 

j°.   (T) The cross correlation function which every instant input  i(t) 
is correlated with its time associated output o(t + T) in the 
interval -T to T 

<p Autocorrelation function of the remnant 
' nn 

to Autocorrelation function   of the output function 

o>) The power spectrum (or spectral density) and Fourier 
transform of   f--(T) 

The power spectrum (or spectral density) and Fourier 
transform of  f..{r) 



d>.  (joo) The cross-power spectrum (or spectral density) and 
Fourier transform of f.   (T) 

'10 

<p The human operator output power spectrum 
£hix 

<p The output power spectrum of the remnant 
[ nn 

<p The power spectrum (or spectral density) and  Fourier 
transform of j*   (r) 

'oo 

/ Symbol representing a sum 

N 
y    j The sum of the coefficients of all mimic filters from the 

j = l first (j=l) to the last (j=N) 

00 Frequency in radians per second (00 = 2^times the fre- 
quency in cycles per second) 

co The undamped natural frequency of a system or a system 
n 

parameter 

A Symbol meaning "is defined as" 

== Symbol meaning "is approximately equal to" 



A SURVEY OF HUMAN OPERATOR MODELS 

FOR MANUAL CONTROL 

Meredith B.  Mitchell1 

A.     Introduction 

When we speak of a "model, " in our modern world of technology 
and advertising we must usually specify whether we are concerned with 
an artist's companion,   a cover girl,   a motor driven airplane one carries 
in his briefcase,  a small plan for a stage set,  a topological represen- 
tation of the brain or what we will term an analytical model.      This 
section is concerned with the latter type. 

An analytical model may be defined as a symbolic representation 
of the functional relationships between the pertinent variables, 
characteristics,  and parameters of a bounded system.     While it is 
possible to portray this type of model in the form of a block or logic 
diagram -- such as an engineer might do -- theoretically all analytical 
models can ultimately be represented as an equation or set of equations. 
The equations,  then,  describe a system by symbolically defining the 
interactions between pertinent inputs,  outputs,  and system constraints 
and properties so as to meet the system output requirements. 

A model    may be considered complete if no term can be removed 
without destroying the model's representation significantly and if either 
(a) no other system factors can be added that would alter the adequacy 
or the solution of the equations,   (b) additional non-measurable,  complex 
or insignificant features may affect the solution,  but only negligibly, or 
(c) other influencing factors exist but are undefinable or uncontrollable; 
however, probabilities associated with the solutions of the equations can 
be defined (stochastic model). 

A system may be simply represented as in Figure 1,  with a 
measurable input or input configuration (i),  a measurable output (o), 

Mr.  Mitchell,  an Associate Scientist for Dunlap and Associates,  Inc. , 
is an electrical engineer and psychologist. 

2 
Unless otherwise defined,   "model" will henceforth refer to the 
analytical variety. 





derived a simple relationship between a response probability and sampled 
stimuli from conditioning experiments with humans.      In our terminology, 
their model -- which equates the probability of the response and the 
probability of particular stimuli -- can be represented thus: 

n. 

P(°X) =_N    =P(i^} 

where p (    ) represents the probability of whatever is contained in the 
parentheses;   Nj is the total number of stimuli presented to a subject; 
i,   are the "sampled" stimuli to which are conditioned the response,  o^; 
and nj    is the number of i ^ within Nj.      For example,   if a subject is 
randomly visually exposed to the 26 letters of the alphabet (Nj = 26), and 
he is conditioned to blink (o^) when three (n^. ) particular letters (i^) appear, 
the probability that blinking will occur to randomly presented letters is 
p(ov ) - JL    "=   .12.      This simple model makes only a rudimentary assump- 
tion concerning the human in the system,  i. e.,  that in this particular kind 
of activity,  his response is solely a function of the number of stimuli,  and 
no other human parameter influences the relationship significantly.      It is 
of interest to note that although p(i\) can be precisely measured, p(o^) 
would be expected to vary within a population of human subjects (and has 
been found to do so1);    therefore,  a more accurate model -- though not 
necessarily a more useful one -- would state the probability density,  i.e. , 

ni\ how p(o^) =     varies with the probability due to population 

variation,   thus at least accounting for non-measurable P's. 

1.      Limitations Due to Man's Complexity 

It is this inability to discern and measure all the parameters of man 
that makes human behavior modelling so difficult.      The data collector is 
unable to control (let alone observe) every possible external and internal 
stimulus impinging upon his experimental subject.      Therefore,  mathe- 
matically expressible models of human behavior must --at least for the 
present -- be limited to relatively simple, well defined man-included 
systems in which (1) all the pertinent inputs to and outputs from the 
human operators are objectively measurable (either directly or indirectly) 
and (2) the equations describing all other elements in the system are 
known or readily derivable.     With this information,  and provided a 
mathematical technique is available,  the input-output relationships of 
experimental subjects can,  theoretically,  be manipulated to yield a 
meaningful transfer function (i. e.,  output function/input function) for the 

see Bush,   R. R. ,   I960, p.   131 



human performing the task under study. * 

For purposes of modelling,  the task generally required of the 
subjects in these studies has been that of tracking.     Investigators have 
used either pursuit or compensatory tracking or both to determine h(t), 
the human's time-dependent transfer function.      The system output is 
generally a measure of the output of the controlled element,  oc (such 
as the position of a "joy stick" in simulating aircraft pitch control),  and 
the input to the human,   i^,  is usually the visual display showing a 
target and the output of the controlled element (pursuit tracking) or an 
indication of the difference -- e.g. , via a meter reading -- between 
the target and the output (compensatory tracking).      (See Figure 2. ) 

System 
Forcing 
Function, 

1 i — 
W   -k 

|DIS] 

Operator's 
Visual 

Stimulus 

ih(t) 

Operator's 
Output 

■ih(t)-is(t)-os(t) 
>LAY 

Human 
Operator 

Feedback 

Controlled 
Element 

System 
Output 

Figure 2.    A general representation of a closed loop compensatory 

tracking  system (after Bekey,   1962,  p.   44) 

1 
i 

Two of the characteristics of the target stimulus which have been 
studied are (1) the way in which it changes in time and (2) the degree to 

1 
Ham,  J.  M. ,   1958,  points out that for tasks in which the operator must 
control several system stimuli (e.g. , when "he acts as a time-multiplexed 
feedback link"),  he is "not representable by an elementary transfer 
function."     Ham does not,  however,   indicate that a model cannot be 
constructed;   he seems only to imply that no one has come up with a model 
and possibly not even with a technique for deriving one. 



which it changes (amplitude).      Regarding (1),   since input configurations 
must be measurable and amenable to mathematical analyses,  most 
investigators have restricted themselves to one or more of the following: 
(a) a step function,   (b) a square wave,  (c) a ramp function,  (d) a saw 
tooth wave,  (e) a superposition of non-synchronous,  inharmonic square 
wave,   saw tooth,  and periodic impulse functions,(f) a sine wave,   (g) a 
superimposition of several, pre-established inharmonious,   "random- 
appearing" sinusuoids (see Figure 3),  or (h) a random input signal 
describable statistically in terms of its frequency spectrum.      In general, 

a step function a square wave a ramp function 

a saw tooth wave a regular impulse function a sine wave 

Figure 3.    Types of inputs (or components of complex inputs). 

then,  the input can be clearly and completely described mathematically 
as a function of time.     Similarly,  the output can be measured with 
regard to variation and amplitude as a function of time. 

2.      Some Mathematics 

In order to determine the dynamic relationships between the input to 
and output of a human in a control system so as to be able to state man's 
transfer function characteristics,   some quite complex mathematical 
techniques are available and have been extensively applied to various data 
by such mathematically oriented investigators as Tustin (1947),  McRuer 
and Krendel (1957),  Ornstein (1961),  Sheridan (1962) and Fogel (1957). 



; 

A lucid description of these techniques if offered by Licklider (1960, 
pp.   178-199).     He explains that if we are given any temporally dependent 
waveform   --  such as would be characteristic of an input signal for 
tracking -- we can find its frequency spectrum by analyzing the original 
wave into independent sinusoids,   since "any physically measurable time 
function is the sum of just one (usually infinite) set of sinusoids. "   (p.   184). 
While the totality of the spectrum is equivalent to the original time 
function,  the component set of sinusoids is easier to visualize and to 
handle mathematically.      This irequency spectrum is defined as the 
Fourier transform of the waveform, 

F(jcu) = J   f(t)e"JWtdt, 
— ©o 

where       F(jco) is the Fourier transform; 

f(t)   is the time-dependent function to be transformed; 
and oa  represents frequency in radians per second.      It may be noted 

that to find F(jto),  all possible values of to are used in the integration;   only 
those corresponding to frequencies in f(t) will yield a non-zero product of 
f(t)e-Jwt. 

Conversely,  if we know the set of sinusoids in a signal,  we can 
compute the inverse Fourier transform to find the time function of the 
waveform, 

f(t)=_l    f°F(jw)ejwt dco 

Closely related to the Fourier transform is the Laplace transform. 
Essentially,  they operate in the same way,   in that they both convert a 
temporal waveform into its frequency spectrum.      However,  the Laplace 
transform has the form, 

F(s) =   f°i(t)e~St dt 
o 

where       s =o- + jcot  and both a* and to are real. 

Essentially,  then,  the integrand of the Fourier transform equation 
is simply multiplied by a real exponential factor to become the integrand 
of a Laplace transform equation.     While jcot is a frequency varying 
characteristic, «"  represents the rate of amplitude increase or decrease 
of its associated sinusoid. 

Therefore,  we can conclude that the two basic differences between 
Fourier and Laplace transforms are that (1) the components of the 
function are generally constant amplitude sinusoids for the former and 
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exponentially increasing or decaying oscillations for the Laplace and 
(2) the Fourier transformed process is assumed always to have been 
operating (i.e.,   since t = -oo) while the customarily used one-sided 
Laplace transform has the components of the spectrum starting at some 
definable reference time,  t = 0. 

Transforms are applicable when the signals (e.g.,  target movements) 
or any other time-varying function (e.g. , human output) can be specified 
as a function of time,  f(t).      If,  however, only certain characteristics of 
the function are known, but the time functions themselves cannot be 
specified,  other techniques must be used.      For example,  if we know the 
inertia of a system and its maximum capabilities along measurable 
continua,  and if from observation we are able to extrapolate future 
performance,  we do not operate according to f(t);    rather, we are attemp- 
ting to estimate a correlation between the historical f(t) and f(t+r), where 
7" is some interval in the future. 

Mathematically,  integration allows us to repeat this intra-function 
correlation an infinite number of times across the range of r*, and over 
a selected period of time,   T, making it possible to determine the nature 
of any regular or constant pattern existing within the total complex signal. 
Such an integration process is called autocorrelation: 

T 
tyr) = -J—      /     f(t) f (t+7*)dt, * 

-T 

where      jP   (r) = the autocorrelation function; 

T = 1/2 the finite time period within which the corre- 
lation is being computed; 

f(t) = the original time function;   and 

f(t+r-) = the original time function shifted forward 7"seconds. 

The interval,  -T to T,   represents the relevant time over which the 
observation is made.      Ideally,   T—>oo.      If this were a simple integral 
of spectal energy,  the autocorrelation function would grow as T increased. 
However,  it should be noted that ?ff{T~) is expressed as an average of the 
integral,   so that as T increases the integral will not grow to unwieldy 
proportions.     By taking the average,  we examine not the energy of the 
f(t) spectra, but the power;   doing this only alters    the units and does not 
change the forms of the functions. 

Note that for our purposes all the f's in the equation can be replaced by 
either i (input) or  o (output). 

11 . 



The symbol 7~ represents a time interval,  ideally anywhere from zero 
to the longest period within the f(t) spectrum.      To obtain the autocorre- 
lation functions, f is increased either continuously or incrementally (e.g., 
for digital computation) and the integration repeated for each value of T . 
If f(t) contains a frequency whose period equals  T ,   J°ff(t) has a non-zero 
value.     If r* is far from any oscillatory period within f(t),   f>ff(t) = 0.      (See 
Figure 4,  D and E. ) 

The autocorrelation function tells about the frequency spectrum in a 
given signal,  but not about phase vs.  frequency relationships nor the 
amplitude vs.   frequency characteristics of that signal.      The amplitude- 
frequency relationships,  as well as the related phase patterns,   can be 
derived from taking the Fourier transform of the autocorrelation function. 
The resulting transform is called the power spectrum,  (J)^: 

$ff(j«) = F(jco) F (-ju>) *|F(JU>)|
2
 =    /fff(r) e"jcor dr 

-a© 

So far, we have discuused the nature of analyzing a complex,   single 
input and/or output signal.     When a signal,   i(t),  is fed into a network, 

(e.g. ,   a human component) the resulting output has its own characteristics 
which we will represent as o(t),   and which presumably has some relation 
to i(t).      To correlate the output function with its associated input function, 
a cross-correlation function can be calculated from 

T 
f   (r) = —      f     i(t) o (t+r) dt, 

10 2T 
-T 

where f(t) represents the input function and o(t+7~) the subsequent,   con- 
tiguous output function.      For the cross-power spectrum (amplitude vs. 
frequency as well as phase shift characteristics of the output relative to 
the input),  we can then compute 

$io(jco)=    n>io<r)e-JUtd 

If the input and output signals are those measured in relation to a 
human operator,  then we can describe the frequency response function 
of the human as follows: 

Note that all subscript f' s in the equation can be replaced by either i or 
o,  and correspondingly,   all F's by either I or O. 

12 



B   Input Waveform 

iti 

t-> 

C   Output Waveform 

D    Input Autocorrelation    I P..(t) 
Function 

E   Output 

Autocorrelation Function 

7^> 

Figure 4.    Illustrations of a correlational and spectral approaches to 
determination of the transfer function of a linear network.    At A,   the 
"black box" is shown with its cover off.    B is the input waveform.     C 
is the corresponding output waveform.    With an autocorrelator,  we 
determine D from B and E from C.    With a cross-correlator, we deter- 
mine F from B and C together.    Since D dies out fairly rapidly as 
^increases,   F is a fair approximation of the impulse response of 
the network.    To find the true impulse response, which is a declining 
exponential,  we would have to "deconvolve" F against D.    Alternative- 
ly,   in the frequency domain,  we use a power-spectrum analyzer to 

13 



F      Cross-correlation Function) j°\Jw 

T-+ 

G     Input Power Spectrum 

w- 

H   Output Power Spectrum 

I    Cross-power Spectrum 

9 

<y-> 

leac AX*A 

JQ^_ 

0 9 

I-V2 

(Figure 4 continued) 
determine G and H from B and C,   respectively,   and a cross-power- 
spectrum analyzer to determine I from B and C together.       The mag- 
nitude of the frequency-response function is the ratio of the magnitudes 
of I and G, which obviously is nearly the same as the magnitude of I. 
The phase shift of the frequency response functions is exactly the phase 
shift of I.      (Taken from Licklider,  pp.   195-196) 
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; 

I 
I 

<L(ju) 
H(jco) =  -i   , 

tii (JW) 

where H(jo>) is the Fourier transform of the human time function, h(t). 
Oh(s) 

This equation is a transfer function statement similar to H(s) =    _   .  .    . 

H(jo)) is the Fourier transform of h(t);   U).   (jco) is the output spectrum 
characteristics solely correlated with the defined input;   and &ü(ju) is 
the discernible non-random input spectrum characteristics.      (See 
Figure 4,   F and I) 

The techniques summarized above form "only a part of the highly 
developed apparatus associated with linear network theory. M   (Licklider, 
p.   199).      But they are adequate to understand quite generally how human 
transfer functions have been derived and analyzed. 

3.     Accounting for Man's Nonlinearity 

In spite of the sophistication characterizing the mathematical 
approach,  the assumption of linearity still raises a question as to the 
reliability of the outcome.      Tustin (1947),  one of the first publishing 
non-psychologists interested in the mathematical nature of human 
response,  pointed to implications in his data that,  in spite of nonlinearities, 
there seems to be an "approximate linear law" of response which exists. 
He,  therefore,  adopted the procedure to hypothesize a linear function 
"which accounts for the main trends of the response,  and subsequently to 
show the general nature of the departure from the linear relationship,  in 
respect both of nonlinearity and of superimposed haphazard variations. " 
(p.   192)     McRuer and Krendel (1957, p.   33) also use this procedure and 
assign the former (the approximate linear term) the weighting function 
symbol,  h(T),  and the latter "remnant" term,  the symbol,  n  (t).      Thus, 
the mathematical techniques discussed earlier have generally been applied 
to experimental data to determine both the "nearest linear law" and the 
superimposed deviation due to nonlinearities and haphazard additions. 

If the human component in the system were truly linear,  it could be 
represented as shown in Figure 5.      The mathematics for determining the 

ih(t) Human weighting 
function,   h(T) 

°h<t) 

Figure 5.    An idealized human operator model. 
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Operator's 
Remnant 

Operator's 
Linear 

Characteristics 

I 
HUMAN OPERATOR 

Feedback 

°*(t) Controlled 
Element 

Og(t) 

Figure 6.    A "quasi-line^ir" model (after McRuer and Krendel,   1959.  p. 10) 

{h (t) Reaction 
Time 

Compensation* 
Neuromuscular 

System 
Reaction 

Figure 7.    The generally accepted fundamental linear characteristics 
of the human operator. 

Compensation (sometimes called "equalization") refers to the human's 
need to make adjustments or interpretations of the control-display relation- 
ships in order to stabilize the system,   i.e.,  to be able to respond in a 
controlled manner to the input. 17 



that the characteristics of the linear part of the human 
operator are approximately invariant over a range of 
input amplitudes or display scale factors,  and that -- 
within that range -- the magnitude of the noise introduced 
by the human operator is roughly proportional to the mag- 
nitude of the response.    (Licklider,  p.   243) 

The latter finding makes it possible to describe the nonlinear remnant 
term as a meaningful,   unobscure mathematical function. 

The quasi-linear approach has been adopted by many human operator 
model makers.      It allows for a relatively simple symbolic description of 
transfer characteristics,  particularly in comparison with the nonlinear 
mathematical model which might resemble an awkward dictionary of 
stimulus-response pairs.        Since,  however,  human operator character- 
istics have been found to be dependent upon type of input (step functions, 
sinusoids,   etc. ),   close approximations of describing functions    can be 
derived for each category of input.      That is,  the output-input relationships 
tend to be linear under a fixed set of conditions,   even though the general 
system is nonlinear.      These describing functions,  then,  are the linear 
portions of quasi-linear models. 

4.      Recent Approaches 

Very recently,   quite a different approach to designing a quasi-linear 
model has been developed and applied by Elkind,   et al   (1961 and 1963). 
Starting with the general model shown in Figure 6,  they express the 
operator's linear characteristics and remnant in terms of filters which 
can be combined to approximate these functions.      The operator's linear 
characteristics are defined by a "time-invariant linear filter, "   w(t-r), 
and a "time-variant linear filter, " w(t, t-r).    (1963,  p.   10).     They 
demonstrate that either of these two weighting functions (w) can be derived 
by a special form of parallel model adjustment technique, where the 
difference between the human operator output and the filter system output 
is analyzed.    (See Figure 8)     This technique is called "mimicking. " 

Elkind,  J.   I. ,  & Green,   D.   M.   (1961) suggest a different method for 
measuring nonlinear systems and thereby establishing a model (p.   53ff). 
They explain that a selected set of filters can be found to represent a non- 
linear system so as to approximate the system by a piecewise-linear 
construction.      At this writing,  no such model has been derived.    (The 
filter technique is presented later in the text. ) 

A describing function is the linear equivalent of a nonlinear element 
within specified restrictions.      In this case,  the response of the nonlinear 
element is related to a particular class or type of input. 

18 



I 

Figure 8.    Measurement by the mimicking technique, 

(after Elkind and Green,  1961,  p.   10) 

For the human operator,  the input-output relation can be written 
in terms of the convolution integral, 

oh(t) =    /     ih(-r) w(t-r)dr +   nc(t) 

From Figure 8,  it can be    seen that the mimic output is 

Z(t) - 
N 

J=- 
b.z (t), 

J     J 

where Z(t) is. the mimic output function,   z.(t) is the output of the jth 
filter,  and b. is the weighting coefficient for the output of the jth filter. 

To get the equation for o^(t) into a form comparable to that of Z(t) 
requires explanations too extensive to be included here;   however,  with 
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certain assumptions Oj1(t) can be set into the form 

°h(t) =    Z     Wj Zj(t) + nc(t) 

"The measurement problem now becomes one of finding the mimic 
coefficients [bi] that give the least mean-square difference (MSD) between 
the mimic output" and the output of the human operator (1963,  p.   13). 
That is,   since the difference,   £(t) = o^(t) -  Z(t),  over the period from 
t = 0 to t = T,   the mean-square is 

T 
1/T     /     C(t)2 dt=   E* = [oh(t) -  Z(t)f 

0 

The b- values which minimize the MSD can be derived by setting the 
derivative of E^    equal to zero for each b:. 

This method not only supplies information for determing the linear 
characteristics of the operator's output,  but simplifies the extraction of 
the remnant which falls out as a residual term after w(t-T*) is shown to be 
approximated by the mimic,  with very little error,  by the expression 

S€2=^7   =So2h      .     f 

where SG     is "the mean-square error of approximation to the [operator] 

characteristics" and S0    is the variance of the operator's output (1963, 

p.   20).    Knowing the mimic transfer function,   M(jco),  and the input-output 

power spectra,  (p^(jco) and <p     (jco) respectively,  the power spectrum of 

€(t) is 

&c (JOi) = $hh(j(o) "   lM(J^I  Z  <J,ii(Juj) 

Note that the second term on the right is the power spectrum of the mimic 
output.      Actually,   then,   if the mimic is a good approximation of the 
operator,   (p    (jco) is the power spectrum of the residual or remnant. 

The above discussion applies to time-invariant functions of the 
operator and mimic.      For time-varying systems,  the approach is the 
same as long as it can be assumed that the system characteristics do not 
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change too rapidly.      The equation for the time-varying operator's 
output is 

oh(t) = ywj(i) z
j(

t) + n(t) 

Here,  w;(t) is a function of time.      But by partitioning this weighting 
function into a non-infinite set of time-invariant filters,  Wj(t) can be 
closely approximated --as long as periods of time can be defined during 
which the system is essentially invariant. 

Using this technique,   experimenters should be able to reverse the 
conclusion drawn by Sheridan in I960 that at that time "experimental 
results permit no analytic generalizations regarding patterns of time- 
variation of the quasi-linear human operator parameters as forced by 
changes in environmental parameters, " (p.   97) since Sheridan's analytic 
techniques were less sensitive than Elkind's.      The most striking 
difference between Sheridan's harmonic analysis and Elkind's filter 
model technique is that while Sheridan took a sample length of two minutes 
and required a sample interval of 15 seconds  (p.   59),  Elkind,   et al used 
a sample of 48 seconds and could reduce their  sampling interval to 0. 1 
seconds (which they could have reduced even further by selecting different 
filters).     In addition,  the method of Elkind permits easy calculations of 
the confidence limits for the measured values of the coefficients. 
Elkind's development appears to be a definite advantage for analyzing 
time-variant characteristics of quasi-linear model. 

It is clear that the approach of Elkind,   et al is  a quasi-linear one 
since the weighting function "approximates the relation between (operator) 
input and output for only a single situation" (p.   9) and a remnant term is 
included to account for nonlinearities. 

In recent years,  three other categories of models have  been investi- 
gated:    Adaptive Control System, Nonmathematical Nonlinear,  and 
Sampled-Data Models.      The Adaptive Control System Model takes into 
consideration the "dither" displayed by pilots when tracking (see Figure 9). 
"Dither" is the term given to a low amplitude,  oscillatory "succession of 
impulses to test the response of the system."     It appears to be a subtle 
attempt of man to see what will happen before taking a definitive action. 
"Based on selective filtering of the response to the test signals,   the loop 
gain can be adjusted."   (Bekey,   1959,  p.   27) 

Earlier, it was mentioned that a mathematical-type nonlinear model 
would essentially be a dictionary of stimulus-response pairs. However, 
some investigators have deviated from the analytical treatment of a model 
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Figure 9.    Adaptive model of the human operator (after Bekey,   1959,  p. 28) 

and have used analog computer simulation directly,  which greatly 
restricts the general usefulness of the model.      However,   in this way, 
a typical nonlinear model,  as shown in Figure 10,   can include several 
functions whose individual parameters can be independently adjusted to 
obtain the best possible simulation of particular human characteristics 
(Bekey,   1959, pp.  28-29): 

a. The threshold of the operator (no response below a minimal 
level) 

b. The saturation rate above which an operator cannot respond 

c. The compensation or equalization of the operator,  i.e. ,  the 
leadlag characteristics necessary to stabilize the system 

d. The operator's reaction time 

e. His neuromuscular system with proprioceptive feedback 

f. The operator's adaptive "dither" 

g. The effect of anticipation 
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Sampled-data models take into consideration the human's refractory 
period and deny the implicit assumption of other models "that over the 
the frequencies of interest the system can be assumed continuous. " 
(Bekey,   1959» p.   29)     Sampled-data models include (in addition to basic 
parameters,   e.g. ,   reaction time) sampling and hold functions which 
together represent the human operators momentary acceptance of the 
stimulus followed immediately by an interval of refraction or in sensitivity 
(see Figure 11). 

1 HUMAN OPERATOR 

^ > „! \{t) 

St 
Data 
Hold 

Human Operator 
Reaction Time 
Neuromuscular 

and Compensation 
Functions 

W 
L. 

Feedback 

Controlled 
Element 

Oe(t) 

Figure 11.    Simple sampled-data model (after Bekey,   1962,  p. 44) 

Bekey (1962), who supports the sampled-data (intermittency) model, 
lists some drawbacks of the quasi-linear model which,  he admits,   "gives 
impressive evidence of the nearly linear behavior of the human operator" 
tracking low  frequency signals.      However,   in addition to the frequency 
limitation,   quasi-linear models have the following drawbacks: 

"1.      Being linear and continuous,   the output of the 
model cannot contain frequencies not present 
in the input signal.      (Such frequencies are 
known to exist in human operator outputs. ) 

"2.      The model cannot account for the substantial 
body of experimental evidence (cited above) 
which suggests that the human operator acts 
in an intermittent manner. 
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"3.      The model does not account for the known ability 
of the human operator to extrapolate his response 
even when the input stimulus temporarily vanishes. 
For example,   if a target dsappears momentarily 
a human tracker will continue to respond at nearly 
constant velocity. 

"On the basis of the above considerations a new mathe- 
matical model has been formulated to include the 
features of the continuous quasi-linear representations 
as well as the intermittent operation of a sampling 
switch. »   (p.  45) 

Implementing his sampled-data concept,  Bekey tested the performance 
of a computer model against data he obtained from subjects performing a 
compensatory tracking task "with a random appearance input signal. " 
He found excellent correspondence between model and human responses. 
Also he noted that his model's input-output behavior more closely approxi- 
mated,  the "experimental results than that which results from linear 
continuous models. "   (p.  44) 

In summary,  we have discussed to this point an overview of various 
concepts of particular human characteristics,  task limitations,   and 
applicable mathematical techniques for constructing bounded human 
operator models.      These concepts will undoubtedly be developed,   expanded 
and revised in the future,  as we learn more about human behavior,  as we 
look at more different types of tasks,  and as we discover more readily 
interpretable and broadly applicable mathematical methods of handling 
nonlinear data.      Meanwhile,   it is the purpose here to bring together the 
bulk of findings currently available. 
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B.      The Structure of Models 

1. Introduction 

Tables  1,   2,   and 3,  taken directly from McRuer and Krendel (1957), 
summarize quite succinctly the human describing and remnant functions 
found by Goodyear (1950,   1952,   1953),  Searle and Taylor (1948), 
Cheatham (1954), Mayne (1951),   Ellson and Hill (1948),   Ellson and 
Wheeler (1949),  Slack (1953),  Russell (1951),  Elkind (1956),   Tustin (1947), 
and the Franklin Institute (Krendel,   1956,   I960).      In brief,  it will be noted 
that the tables for the describing functions,   Tables 1 and 2,  include (1) 
"Type of forcing function, " (2) "General control task," (3) "Controlled 
element transfer function, " (4) "Best fit human operator transfer function, " 
(5) "Frequency range of human operator measurements, " (6) "Average 
linear correlation, " and (7) "Investigators and remarks."     For each of 
the human operator transfer functions,  numerical values of the gains and 
time constraints are listed as functions of the controlled element transfer 
function.      And the values differ too,   depending upon the input forcing 
function which was used in the experiment whose resulting data yielded 
the derived values. 

2. The Conventional, General linear Model 

Most of the mathematical models of the linear approximation of the 
human transfer function (generally expressed in Laplace transform) include 
a gain term,  K,   a reaction time function,   e" r"s,  and one or more of the 
following:    (Tj^s + 1)T a lead term acting like a kind of anticipation and 
contributing especially to high frequency stability;    (Tj s + 1),   a lag term 
contributing particularly to low frequency system stability;   and (Tj^ s + 1), 
a neuromuscular lag term due to the human body's inertia.      In the earlier 

discussion,   _jr    has been called "compensation, " while e   ;      has been 
Tj s   +  1 

"reaction time, " and     was the "neuromuscular system" describing 
TNs + 1 

TTJ   TJ and T^r  are time constants.      A time constant is a system parameter 
which expresses the characteristic rapidity with which an oscillation tends 
to die out.      The time constant is inversely related to the time it takes an 
exponential function to fall a given amount.      When the amplitude of an 
exponential function decreases to 0.368 times its initial value,   T = 1/jfw n 

where T is the time constant, {* is the damping ratio andoy  is the natural 
undamped frequency of the function. 
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Table 3     Summary  of Operator Remnant Charact 

INVESTIGATOR 

GENERAL    CONTROL    TASK    INCLUDING 
CONTROLLED   ELEMENT   DYNAMICS 

(GAIN   NOT   SHOWN) 

FORCING   FUNCTION 
AVERAGE 

LINEAR 
CORRELATION 

RUSSELL 

Simple tracker, handwheel type control 
with no restraints 

v; = i 

Random appearing superposition 
of 4 sinusoids 

0.9 

0.6«     ).«8     2.87     4.27 

Simple following with pip trapper 

Random appearing function mode up of 
40- 120 sinusoids, giving any 
desirable rectangular spectra 

/co i .16, .24, .4, .64, .96, 1.6, 2.4 cps 

or 

a>co i  1, 1.5, 2.5, 4, 6, 10, 15 rod/sec 

7  in. rms 

T3 

R.16 - 0.995 
R.24 - .99 

R.40 - .995 

R.64 - .98 
R.96 - .92 

R1.6 - .75 
R2.4 - .58 

GOODYEAR 

Simulated longitudinal airciaft control in pitching mockup; 
stick with inertiol, spring, and damping restraints 

Tcs +1 

Random appearing 

s(T]S « l)[(s/c^n)2
+ 2£s/a>n> 1] 

1/7; Ä 1.37,     1/7! «2.4 

e*B-4.17,    C-0.52 

FRANKLIN 

Simulated F-80A in toil chose; aileron and elevator controlled 

Y   ~ (s-/0.242)(s/- 2.92 + l)(s/4.11 * lHs/8.32 ♦ l) 
f<      s2(s/0.0017-|-l)U/5.65 -t-l)f(s/3.88)2 * 2(0.084)s/3.88 + ll 

Random appearing white noise through 
third order binomial filter giving 
available corner frequencies of 
1, 2, and 4 rad/sec 

Yt  m (5/0.28.|-l)(s/1.58 + l) 

>'      s2f(s/3.98)2 + 2(0.56)s/3.98 ♦ ll 

1.2, «4 

Elevator, 

pa = 0.6 

Aileron, 

P. = 0.5 

(p was a 

strong 
function 

0* "co) 

log Ot 
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Table  3     Summary of Operator Remnant Characteristics in Compensatory Tasks. 

FORCING    FUNCTION 
AVERAGE 
LINEAR 

CORRELATION 

REMNANT   SOURCES   and   BEST   FIT   DATA 

ALL   REMNANT   ASSUMED   TO   BE 
DUE   TO  NOISE   INJECTED  AT 

THE   OPERATOR'S   INPUT 

1 <*>„„ 

ALL   REMNANT   ASSUMED   TO  BE 
DUE   TO   NOISE   INJECTED   AT 

THE   OPERATOR'S  OUTPUT 

IV, I2    ow 

I«I2 r*»'/ 

ALL REMNANT  ASSUMED TO BE  DUE   TO 
NONSTEADY   OPERATOR   BEHAVIOR 

Random appearing superposition 
of 4 sinusoids 

0.9 

0.66     l.M     2.87     4.27 

Random appearing function made up of 
40-120 sinusoids, giving any 
desirable rectangular spectra 

fco ± .16, .24, .4, .64, .96,1.6, 2.4 cps 

or 

we = 1, 1.5, 2.5, 4, 6, 10, 15 rad/sec 

1  in, rms 

•D 

R.16  - 0.995 
R.24  - .99 
R.40  - .995 
R.64  - .98 
R.96  - .92 
R1.6  - .75 
R2.4  -     .58 

White noise, 

vaiid for 

R.16-R.64 only 

♦^(cu) = 2ran
2
e((sin^r)/(^6/r)]2 

R
^r)   =0-^(1-1,1/7) 

T = 0.75//CO    (All cases) 

°*       ^~    (R .40 - R 2.4) 
C*„df V/co 

****»('>   --ol„(\-\r\/T) 

*here:    T,  =  -^   = 0.25 sec 

OIH   = 0.7/eo 

and 

«Af^M   - TlZ jf .£>/«>*«« + r)dr 

Nodi 

all thre] 
is po! 

Random appearing 

T4 = 2.7 sec 

COMPUTE« 

Random appearing white noise through 
third order binomial filter giving 
available corner frequencies of 
1, 2, and 4 rad/sec 

■o 
2 I  V(D db/dec 

& 
: \ 

1.2. or 4 

Elevator, 

p„ = 0.6 

Aileron, 

pQ = 0.5 

(p was a 

strong 
function 

of ^co) 

ALTHOUGH   THE   FRANKLIN   F-80   DATA   REMNANT   POWER   IS   CONSISTENT   WITH   ALL    OF    THESE   MODI 

IT   IS   NOT   UNEQUIVOCALLY   ASSIGNABLE   TO   ANY   ONE   SOURCE 

log 0) 

2 



ary of Operator Remnant Characteristics in Compensatory Tasks. 

AVERAGE 
LINEAR 

CORRELATION 

REMNANT   SOURCES   ond   BEST   FIT   DATA 

ALL   REMNANT   ASSUMED   TO   BE 
DUE   TO  NOISE   INJECTED  AT 

THE   OPERATOR'S   INPUT 

A      _   —i— l_ 
\H\2 

<t>n, 

£*»<<( 

ALL   REMNANT   ASSUMED   TO   BE 
DUE   TO   NOISE   INJECTED  AT 

THE   OPERATOR'S   OUTPUT 

\yp\
2   <t>m 

\H\2 C*ndf 

ALL REMNANT ASSUMED TO BE  DUE   TO 
NONSTEADY   OPERATOR   BEHAVIOR 

NONLINEAR  OPERATION ANO DITHER 

0.9 

R.16 - 0.995 
R.24 - .99 
R.40 - .995 
R.64 - .98 
R.96 - .92 
R1.6 - .75 
R2.4 - .58 

«t)^ = A*[8(a> -CJJ) + S(CD + cutf)] 

Cüj =   7.73 rps 

White noise, 

valid for 

R.16-R.64 only 

«fc^U)  = 27a,?e[(sin W)/(W)]2 

«W  =<d-l'l/7-) 

7" = 0.75//CO    (All cases) 

>-   i i^g    (R.40. R2.4) 
K<*f      vVcc 

«AW> =a^(l-|r|/T) 

*here:    T, =  ^|   = 0.25 sec 

*AW   = 0-7/co 

and 

***<*«  = ft. ^ tfmDMt + r)dr 

No dither observed; 

Small threshold nonlinearity 
is possibly present 

Elevator, 

p« = 0.6 

Aileron, 

P. = 0.5 

(p was a 
strong 
function 
of &vJ 

^ = 27/£>,/2)2[(sin}4tur>,)/(W>()l
2 

+ ff/4J[5(airf + &j) + cX<ty-a»)] 

T4 = 2.7 sec,    toj = 8.8 rad/sec 

d^ 

OITHER 

4^ 
COMPUTER   MECHANIZATION 

ALTHOUGH   THE   FRANKLIN   F-M   DATA    REMNANT   POWER   IS   CONSISTENT   WITH   ALL    OF    THESE   MODELS, 

IT   IS   NOT   UNEQUIVOCALLY   ASSIGNABLE   TO   ANY   ONE   SOURCE 
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I 
I 
I function.      Thus,  the most frequently accepted generalized human operator 

transfer function is the composite of these three terms (see Figure 7): 

Ke"<rS(T_  s + 1) 

H(s)    =        (1) 
(TjS + 1) (TN8+1) 

3.      Symbol Valued 

Ham (1958) points out that K,   TL and Tj "are highly variable from one 
set of conditions to another. " (p. 16)     Assuming a simple compensatory 
tracking task in one coordinate,  Ham reports that in the reaction time term, 
e"rs,   T = 0. 2 seconds with an approximate maximum variation of ±20%. 

The reaction time delay contributes a phase lag that 
increases linearly with frequency.      This intrinsic 
phase lag of the human operator is his dominant phase 
characteristic.      Reaction time delay establishes a 
definite upper limit to the rapidity with which an 
operator can act on error signal stimuli.      In practice 
it means that a (simple) closed loop system . . .   having 
an operator in the loop cannot reproduce input signals 
. . .  having frequency spectra extending above about 3 
cycles per second,    (p.   17) 

Similarly,   T^ is a limiting  factor,   since motor activity requires time 
once the motor nerves have sparked the appropriate muscles.     Ham states 
that TN = 0.1  second,  with a variation of approximately ± 20%.     He further 
suggests that it is often possible to replace e~rs/(l + %s) by e~*r+ TN)S 

for modelling purposes,    (p.   17) 

The gain,   K, has been observed to have values of from 1 to 100 when 
the controlled element is designed to respond instantly to control movements 
of the operator.     K depends upon the bandwidth of the stimulus.      (The 
higher the uppermost frequency in the forcing function spectrum,  the 
broader the bandwidth. )     Values of K have been observed to decrease 
rapidly as bandwidth was increased.      Thus,  K is a function of signal 
spectrum and control element characteristics.      A human operator tends 
to adjust his K as high as possible and still maintain system stability (Ham, 
p.   18). 

Tj has been observed to have values ranging from 0 to 20 seconds. 
It is usually only a few seconds,  but tends to increase as input bandwidth 
decreases.      "By introducing a Tj the operator may be able to raise his K 
and hence improve low frequency tracking without making the system 
unstable." (p.   18) 
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The lead time constant,   T^ generally ranges between 0 and 2. 5 
seconds,   "although its upper limit is not known. "     This lead,  which acts 
like anticipation,   may tend to improve feedback loop stability depending on 
"the particular situation,   upon the spectral character of (the signal) and 
upon the character of the system" being controlled (p.   19). 

4.      Another Form of the Linear Model 

From McRuer and Krendel's tables,   it is clear that several studies 
have yielded data which fit a simpler form of equation (1) resulting when 
one or more of the time constants (except for T) approach zero.      For 
example,  Elkind's derived transfer functions (McRuer and Krendel,   1957, 
p.   214) all have no Tj^ term.      And in one of his equations,   Tj^ was another 
time constant found not to be significant. 

A different appearing human operator linear transfer function has 
also been found to fit experimental data (see Table 1,  items 1 and 2): 

-Ts 
H(s)   =   —— - =  (2) 

-Ts e 
m2    3 T    s 

+ 
2f T s2 

K(2) 

+       S       + ] 
K(2) 

K(2) 

where C  equals the damping ratio,  K;£) = gain for this form of the equation, 
and T = an overall time constant.     When the input forcing function is a 
step function,  the resulting human response data fits equation (2),   but also 

e"rS 

is very closely approximated by         where T-^r "= 1/K.-.. (see Table  1 
TNs + 1 1N W 

item 1). 

Equation (2) also describes the results obtained when the input forcing 
function is a regular sine or square wave.      For these particular periodic 
inputs,  however,  T = 0, which seems to mean that the regularity of the 
stimulus,   resulting in learning ease and prediction accuracy,   makes it 
possible for a man to perform as if he required no reaction time. 

5.      The Remnant 

Investigators who have considered the remnant term in their quasi- 
linear approach have ascribed the remnant to one or more of four sources: 
(1) noise at the operator's input,   (2) noise at the operator's output,   (3) non- 
steady behavior of the operator,  or (4) "nonlinear operation and dither." 
(See Table 3.)     Ham (1958) states that "in compensatory tracking the 
remnant is largely noiselike or random in character . . .  [but] its origin 
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and quantitative character is not yet fully understood. "    It has been found 
that the mean square value of n(t) "increases as the bandwidth of the system 
stimulus signal . ..   increases. "   (p.   20)     In other words,  as the input 
signal varies faster and faster,  the operator tracks more and more 
erratically. 

The most descriptive and comprehendible property of a remnant 
function due to noise or dither is its power spectrum or spectral density, 
$nn. l    (McRuer and Krendel,   1957, p.   35) 

$M"kh- lc<8>l2$u <3> 

where C(s) is the Laplace transform transfer function of the entire closed 
loop system,   <J)nh ^s t^ie human operator output power spectrum,  and (Pü is 
the power spectrum of the input forcing function.      The useful property of 
the remnant function due to nonsteady human operator behavior is the 
autocorrelation of the time-dependent portion in the system transfer 
function C(s).      Letting fAcAc represent that autocorrelation function, 

PACAC = f™ (4) 
fa 

where fnn and ^H are tne autocorrelation functions of the remnant and 
input forcing function, respectively. (See McRuer and Krendel, 1957, 
p.   106. ) 

6.     Approaches by Individual Researchers 

Earlier it was mentioned that Bekey (1962) is one of the supporters of 
the Sampled-Data Model concept.      The model he proposes is one containing 
(a) reaction time and neuromuscular system functions, 

-rs 
Hl(s)=_^  

TNS + 1 

plus (b) hold circuit characteristics, 
-T    s T      s + 1       1-e"" 

See the discussion of the general concept of the power spectral density 
in the introduction. 
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Thus,  his model (which is diagrammed in Figure 9) turns out to be 

H(s) = H.(s)H (s) = (— ) (T,r S + 1 ) ( i ' C     —) (5) 

TNs+1 T' 

In Bekey's experiment subjects were required to perform compensatory- 
tracking in which the forcing function was a sum of 1 0 random-appearing 
nonharmonious sinusoids.      He compared the results of applying his model 
and a linear continuous model with the actual experimental data,   and he 
found that "the discrete models do indeed result in input-output behavior 
which more closely approximates results than that which results from 
linear continuous models. "     He goes on to say,   "the continuous models 
were considered adequate representations of tracking behavior when the 
input function bandwidth did not exceed approximately 3/4 cps.      In the 
present study the band extended to 1. 6 cps ;     spectral peaks were noted in 
the range of 1-1.6 cps (which are consistent with previous data),  and 
these peaks were shown to be consistent with linear sampling models as 
well, " (p.  49).      Previously the peaks were unexplainable when it was 
attempted to fit experimental data to linear continuous models. 

Diamantides (1958) chose to study an analog computer,  nonlinear 
model of the human operator using a model adjustment technique.      While 
his model resembles the generalized one shown in Figure 9,   it differs in 
that he omits dither and saturation limits on rate response.      (See Figure  11. 
He includes some difficult nonlinearities,  however,   such as is illustrated 
in Figure 12,  which gives an example of the type of discontinuous function 
that cannot readily be included in a linear mathematical model, particularly 
when more than one function has discontinuities. 

Diamantides' experiment required that pilots correct for flight 
simulated changes in pitch angle due to "a wind disturbance. "     By simul- 
taneously observing computer and pilot performances resulting from 
identical inputs to each,  he could manually adjust analog computer  potenio- 
meters representing simulated human parameters so that the analog 
performance matched a given subject's performance. 

The computer technique used by Ornstein (1961) was a little more 
sophisticated than that of Diamantides,  but the former's model was much 
simpler.      Ornstein began with the assumption of an equation (1) model, 
but put the model into the equivalent form 

H(.) =   (aS.+ 1)e"rS (6) 
CS      +  b S   T   d 
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Figure 12b.    Form of describing function for the threshold character- 
istic in Figure 12a. 

By means of some complex mathematics,  he then programmed the computer 
to derive automatically,   repeatedly and continually,  the values of the 
parameters a,  b,  c,  and d based on inputs to and performance measures of 
human operators using a control stick for compensatory tracking;   because 
of equipment limitations, rwas assigned the value 0.2 seconds.      He refers 
to his setup as a "manalog. "     This automatic method for computing the 
coefficients was found to be sensitive as well as "effective from the points 
of view of reliability,  validity and efficiency.      The sensitivity of the 
technique is such that its further application may reveal nuances and 
relationships which permit the amalgamation of modern and classical 
efforts in psycho-motor research."     (Ornstein, p.  45) 

Elkind,  etal, who also used a model adjustment technique,   comment 
on the difficulties inherent in Ornstein's techniques.      They claim that: 

the coefficients of this approximation,  the coefficients 
of the differential equation,   have to be determined by 
"cut-and-try" or "hill-climbing" procedures.      There 
does not seem to be an analytic procedure for finding 
the coefficients.      The technique also requires an 
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assumption of the form of pilot transfer function. 
Since there may be a strong interaction among 
the coefficients being adjusted (the value of one 
coefficient influences the values of the others), 
inaccurate results may be obtained if the operator's 
actual characteristics are not of the assumed form. 
(1963, p.  5) 

Therefore,  although Elkind,   et al,   take a model adjustment approach, 
they employ an operator-matching concept of mathematical functions used 
by Huggins.    (Elkind,   et al,   1963,   p.   6)     It is noteworthy,  by the way, 
that these investigators used equation (1) as the transfer function which 
the filter model was adjusted to fit. 

Sender also used a model-adjustment technique, 
off by assuming the simplest possible model he can, 

However,  he starts 

H(s) = 
K e 

-rs 

V + 1 

Then,  Senders forces this model into his system and adjusts other system 
parameters to make the human operator (pilot) model fit.    'We want the 
pilot to behave as a simple amplifier,  except that he is constrained by his 
reaction time delay and his neuromuscular lag."     In other words,   this 
simplified model may result in system errors, unless "all dynamics that 
are needed to reduce the error [are] put in the controlled system,   rather 
than expecting the pilot to learn them. "   (p.   9) 

Senders' problem was to find the "optimum control system dynamics 
for the barest human operator model in a simple tracking system. "     He 
gathered results of previous studies,  and by programming a computer to 
search for coefficient values leading to minimum error he derived the 
most effective-appearing control system functions.      In diagrammatic 
form,  the total tracking system he concluded to be optimum appears as 
Figure 13. 

I(s) 

-1* (1-1-0. 25s)(l4-0.25s) H H(s) 
Controlled Element 

1 
s(l-hO. 5s) 

O(s) 

Figure 13.    Senders' optimum control system dynamics for simplifying H(s) 
(after Senders,   1959, p.   10) 
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7.      Two Recent Applications of the Model 

Rathert,  etal,   (1961) used an analog computer simulation of the 
human operator to evaluate characteristics of the total flight system 
simulator and to evaluate subjective pilot opinions.      These investigations 
adopted equation (1) as their model and utilized results of previous studies 
to assign all but two parameter values,  K and T, 

-0.2s 
Ke (T,  s + 1) 

j_j/g\ _    _  
(0. 1 s + 1) (0. 1 s + 1) 

The gain,   K, was varied at two constant values of T-^,  zero and 0. 1 in order 
to see what changes in these terms were needed to best "match the perfor- 
mance of the real pilot. " (p.   6)     The results of using this model provided 
numerical values of the range of acceptable gain values for two categories 
of control dynamics.      "With good control dynamics,  the human pilot could 
have used broad range of gain . . .  before the appearance of any instability 
.. . With poor dynamics,   the human pilot must have had to adjust his gain 
closely on a very narrow band to avoid either poor performance or . . . 
instability. " 

Frost (1961) used an even simpler model for his evaluative study.      He 
wished to determine the range of K values,  possible for good performance 
and stability of a tracking system in which the quickening    of the display 
signal was varied.      His model was 

__   -rs „   -0.2s 
H(s)=    Ke Ke 

TNs + 1 0. 1 s + 1 

The schematic model he describes for his study appears in Figure 14. 

A quickened system continuously displays to the human operator where 
he must position his control to meet a given system output criterion. 
(Morgan,   etal,  Eds. ,   1963, p.   241)      This is done by feeding derivative 
information back to the display,  as indicated in the simple example of 
Figure 14, which represents the writer's conception of the Frost system. 
Frost varied quickening by means of a variable gain,  KQ.    Using his 
simple operator model,   "Even this very poor pilot was able to maintain 
acceptable control when the display signal was suitably quickened. . . . ". 
(Frost, p.  2) 
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Figure 14.    A simple quickened man-machine system 

8.      Concluding Comments 

In his excellent article,   Licklider (I960) summarizes so well the 
apparent current difficulties in the human operator modelling area that it 
seems appropriate here to reiterate his conclusions.      Licklider says that 
there appears to be 

....  a disproportion between the mathematical 
apparatus . . .   ready to be brought to bear upon the 
results of tracking experiments and the results upon 
which the apparatus can be set.      The reason for the 
existence of this disproportion is two-fold:    First, 
the problem of processing data for use in testing 
models has proven difficult.      Only very recently 
has there been more than a trickle of experimentally 
determined transfer functions.      Second,  many of 
the experiments on tracking have not been formulated 
in relation to models at all.      There are many bits and 
pieces,  and few real sets of modellable data. 

The main need,   therefore,   is for reliable and 
practical data processing equipment.      The whole 
field could be revolutionized by a few comprehensive 
experiments,  but at the present rate they would take 
years and hundreds of thousands of dollars,   (p.   273) 
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